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CHAPTER 1

Introduction

1.1
Prob. Calling

Units
Service
Function

Discipline Capacity No. Servers No. Stages

(a) Airplanes Landing run-
ways

FCFS (PRI
in
emergency)

Stack
(≈ ∞)

No.
runways

1-landing
only;
2-landing
and
taxiing

(b) Filled Gro-
cery carts

Checker(and
bagger)

FCFS (with
jockeying)

(≈ ∞) With
jockeying
and channel
choice acts
like a
c-server
model

1

(c) People Clerks same as (b) same as (b) same as (b) 1

(d) Cars Paying toll
(toll booth)

FCFS ∞ 1 or more
(in fog, acts
like indep.
single
channels no
choice or
jockeying)

1

(e) Cars Gas filling FCFS Finite No. of
pump
islands
(similar to
(b)
although
jockeying
difficult)

1

1



2

(f) Cars Car-wash
building

FCFS Finite Generally 1 Many,
with no
storage
between
stages

(g) Calls Lines in
switchboard

FCFS Finite No. of lines 1

(h) Patients Doctor
(could be
batch
service)

Fixed as to
appoint-
ments

Finite
seating
capacity
and waiting
room

1, unless a
clinic

Usually 1
but could
be several

(i) Tourists Tour group FCFS (≈ ∞) 1 or more Multiple

(j) Components Operations
and
inspection
batch service

FCFS Finite 1 or more 4

(k) Programs Processing
Programs

FCFS (or
PRI)

same as (b) 1 1

1.2 One could give a variety of illustrations, e.g., people calling into a bank to find
their account status. The customers are the calls, it is generally a multi-stage
process, where first an automated message of which button to press depending on
what’s desired is received, and then, after pressing the appropriate button, getting
the desired information automatically or asking for a customer representative. We
would have finite capacity - if all lines are tied up, a busy signal results and the
call must be replaced. It is multi-stage and would usually be a multi-server queue,
with a FCFS discipline. Another example might be a bakery, where upon entering,
the customer takes a number, so that we have a true, FCFS, multi-server queue
with a single waiting line (the queue being the numbers). It would be a single-stage
process, since a given server serves only one customer at a time. The capacity
would be finite, although there is usually enough space so that it is essentially
infinite. As a final example, consider a blood donor center. We have a multi-
stage process (check-in, filling out information, blood pressure and clotting-time
checks, and finally giving the blood). Some stages have a single server and others
have multiple servers. It is generally an appointment system, but if it is a drop-
in center, customers can arrive completely randomly and we would have a FCFS
discipline. There is a finite capacity in that if the waiting room is completely filled,
donors might be asked to come back at another time.

1.3 The parameters are λ = 40/h and 1/µ = 5.5 min. Using units of hours, µ =
60/5.5 .= 10.91/h. The utilization should be less than 1, so λ/cµ

.= 40/(10.91c),
which implies that c > 40/10.91 .= 3.67. At least 4 are required to achieve steady
state.

1.4 Lq = λWq = (3/min)([75/60] min) = 3.75 or, say, 4. The 3.75 number is, of course,
the average number in the queue. We may wish to provide 5 or 6 slots to guarantee
that most callers get into the queue.
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1.5 (a): From Table 1.2, probability of any server busy, pb = 1− .01 = .99. Now pb =
λ/cµ = r/c, so that r = c×pb = 2×.99 = 1.98. With 3 servers, pb = 1.98/3 = .66, so
that now, each server is idle 34% of the time, more than enough time for breaks. (b):
If now, µ becomes 0.8×µ, pb = λ/(3×0.8×µ) = (1/0.8)(r/3) = 1.98/(2.4) = 0.825.
This still gives an idle percentage for each server of 17.5%, again more than enough
time for breaks. (c): Let µ′ =the new service rate, so that 1/µ′ = .8(1/µ), hence
µ′ = 1.25µ. Thus pb = λ/(2µ′) = λ/(2× 1.25µ) = (1/1.25)(.99) = 0.792, or an idle
percent per server of 20.8%, a cheaper solution giving each server enough time for
breaks.

1.6 Let T be the total waiting time. If, when you arrive, the person in service is
just about finished, then you wait on average eight service times (yours and the
seven ahead of you) or E[T ] = 8(2.5 min) = 20 min. If, when you arrive, the
person in service is just beginning, then you wait on average nine service times or
E[T ] = 9(2.5 min) = 22.5 min. The average wait is somewhere in between.

Assuming the latter case, T is the sum of 9 IID normal random variables each
with mean 2.5 and standard deviation 0.5. So T is a normal random variable with
mean 22.5 and standard deviation

√
(9 · 0.52) = 1.5. Then Pr{T > 30 min} =

Pr{Z > (30 − 22.5)/1.5} = Pr{Z > 5}, where Z is a standard normal random
variable. From standard normal tables, Pr{Z > 5} .= 0.

1.7 (a) Apply Little’s law to the system of active players in the league. The average
number of active players in the league is represented by L, where L = 32 · 67 =
2, 144. The average rate that players enter the league is represented by λ, where
λ = 32 · 7 = 224 per year. The average time spent in the league is represented
by W . By Little’s law, W = L/λ = 2144/224 = 9.57 years.

(b) Here, it is given that W = 3.5 years. As before L = 2, 144 (the number of
active players in the league). The average rate that players enter the league is
λ = L/W = 2, 144/3.5 ≈ 613 per year. Since 224 players are drafted each year,
an average of 613− 224 = 389 players enter the league without being drafted.
(This analysis assumes that a player who leaves the league never returns.)

1.8 Consider the university as a system where students enter by enrolling at the univer-
sity. The average undergraduate enrollment is an estimate for L (so L = 16, 800).
The average number of new students per year (the sum of the middle two columns)
is an estimate for λ (so λ = 4, 052 per year). W is an estimate for the average time
an undergraduate spends at the university. By Little’s formula, W = L/λ ≈ 4.1
years. (The main assumption here is that the system is operating in steady-state.
This may not be a valid assumption, for example, if enrollment were growing. How-
ever, this particular example does not indicate a noticeable growth trend.)

1.9 Apply Little’s law to the set of homes on the market. The average number of homes
on the market is estimated as L = 50. The rate that homes enter the market is
estimated as λ = 5 per week. By Little’s law, a home is on the market for an
average of W = L/λ = 10 weeks before it is sold. This assumes that the observed
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numbers are representative of long-term averages. Furthermore, it is assumed that
you have no additional information that might change your estimate. For example,
if you price your home at a very low price, you will probably sell it more quickly
than the average.

1.10 We use the Delay Analysis for Sample Single-Server Queue model in the Basic
Model category in QtsPlus:

DELAY ANALYSIS FOR SAMPLE
SINGLE-SERVER QUEUE
 This is a basic line waiting-time analysis for a sample G/G/1 queue

constructed from an input sequence of interarrival and service times.
Output:

Number of Observations 20
Total time horizon 147
Mean interarrival time 7.35

 Arrival rate (λ) 0.136054422 Put data below into two columns of equal length.
Mean service time 6.2 Enter data and then press "Solve" button.
Service rate (μ) 0.161290323
Empirical traffic intensity (ρ) 84.35%
Average line delay (Wq) 3.95
Average system wait (W) 10.15

Customer Line Delays System Waits Service Time Inter-arrival Time
 n Wq(n) W(n) S(n) T(n)

0 *N/A* *N/A* *N/A* 1.
1 0.0 3.0 3. 9.
2 0.0 7.0 7. 6.
3 1.0 10.0 9. 4.
4 6.0 15.0 9. 7.
5 8.0 18.0 10. 9.
6 9.0 13.0 4. 5.
7 8.0 16.0 8. 8.
8 8.0 13.0 5. 4.
9 9.0 14.0 5. 10.
10 4.0 7.0 3. 6.
11 1.0 7.0 6. 12.
12 0.0 3.0 3. 6.
13 0.0 5.0 5. 8.
14 0.0 4.0 4. 9.
15 0.0 9.0 9. 5.
16 4.0 13.0 9. 7.
17 6.0 14.0 8. 8.
18 6.0 12.0 6. 8.
19 4.0 12.0 8. 7.
20 5.0 8.0 3.

Solve

Clear Old Data
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1.11 Using QtsPlus Delay Analysis for Sample Single-Server Queue model in the Basic
Model category:

DELAY ANALYSIS FOR SAMPLE
SINGLE-SERVER QUEUE
 This is a basic line waiting-time analysis for a sample G/G/1 queue

constructed from an input sequence of interarrival and service times.
Output:

Number of Observations 10
Total time horizon 60
Mean interarrival time 6

 Arrival rate (λ) 0.166666667 Put data below into two columns of equal length.
Mean service time 4.6 Enter data and then press "Solve" button.
Service rate (μ) 0.217391304
Empirical traffic intensity (ρ) 76.67%
Average line delay (Wq) 1.7
Average system wait (W) 6.3

Customer Line Delays System Waits Service Time Inter-arrival Time
 n Wq(n) W(n) S(n) T(n)

0 *N/A* *N/A* *N/A* 5.
1 0.0 2.0 2. 5.
2 0.0 7.0 7. 5.
3 2.0 8.0 6. 5.
4 3.0 9.0 6. 5.
5 4.0 10.0 6. 5.
6 5.0 8.0 3. 5.
7 3.0 4.0 1. 5.
8 0.0 4.0 4. 5.
9 0.0 1.0 1. 5.
10 0.0 10.0 10.

Solve

Clear Old Data

1.12 The following table lists various statistics associated with each customer. “# in
System” and “# in Queue” refer to the number of customers in the system and
queue as seen by the arriving customer.

Customer # / Service Start Exit Time in # in # in
Arrival Time Time Time Queue System Queue

1 1.00 3.22 0.00 0 0
2 3.22 4.98 1.22 1 0
3 4.98 7.11 1.98 2 1
4 7.11 7.25 3.11 2 1
5 7.25 8.01 2.25 2 1
6 8.01 8.71 2.01 3 2
7 8.71 9.18 1.71 4 3
8 9.18 9.40 1.18 3 2
9 9.40 9.58 0.40 2 1
10 10.00 12.41 0.00 0 0
11 12.41 12.82 1.41 1 0
12 12.82 13.28 0.82 2 1
13 13.28 14.65 0.28 1 0
14 14.65 14.92 0.65 1 0
15 15.00 15.27 0.00 0 0

The values in the table are computed as follows:
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◦ The exit time is the service-start time plus the service duration.
◦ The service-start time is the maximum of the exit time of the previous

customer and the arrival time of the customer in question. (The first
customer starts service immediately upon arrival.)

◦ The time in queue is the service-start time minus the arrival time.
◦ The number in system is the number of previously arriving customers whose

exit time is after the arrival time of the customer in question.
◦ The number in queue is the number in system minus one, with a minimum

value of zero.

L
(A)
q is the average of the last column. L(A)

q = 12/15 = 0.8. Lq is the total person
minutes spent in the queue (the sum of the “Time in Queue” column) divided by
the total time interval. Lq = 17.02/15.27 = 1.1146. Note that Lq 6= L

(A)
q .

1.13 From differential equation theory, the solution to dy(t)
dt + φ(t)y(t) = ψ(t) is y(t) =

ce−
∫
φ(t)dt + e−

∫
φ(t)dt

∫
e−

∫
φ(t)dtψ(t)dt. So dp0(t)

dt + λp0(t) = 0; p0(0) = 1.

Set φ(t) = λ and ψ(t) = 0⇒ p0(t) = ce−λt.

From the boundary condition: 1 = ce0 ⇒ c = 1. Therefore, p0(t) = e−λt.

dp1(t)
dt + λp1(t) = λp0(t) = λe−λt; p1(0) = 0.

Set φ(t) = λ and ψ(t) = λe−λt ⇒ p1(t) = ce−λt + λte−λt.

From the boundary condition: 0 = ce0 + 0⇒ c = 0⇒ p1(t) = λte−λt.

dp2(t)
dt + λp2(t) = λp1(t) = λ2te−λt; p2(0) = 0.

Set φ(t) = λ and ψ(t) = λ2te−λt ⇒ p2(t) = ce−λt + (λt)2

2 e−λt.

From the boundary condition: c = 0⇒ p2(t) = (λt)2

2 e−λt.

dp3(t)
dt + λp3(t) = λp2(t) = λ3t2

2 e−λt; p3(0) = 0.

Set φ(t) = λ and ψ(t) = λ3t2

2 e−λt ⇒ p3(t) = ce−λt + (λt)3

3·2 e−λt.

The boundary condition gives c = 0⇒ p3(t) = (λt)3

3! e−λt.

Now assume pn−1(t) = (λt)n−1

(n−1)! e
−λt. Set φ(t) = λ and ψ(t) = λntn−1

(n−1)! e
−λt ⇒ pn(t) =

ce−λt + (λt)n

n! e−λt and boundary condition gives c = 0⇒ pn(t) = (λt)n

n! e−λt.
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1.14

pn(t) =
τne−τ

n!
, τ = λt, n = 0, 1, 2 . . .

MN(t)(θ) = E[eθN(t)] =
∞∑
n=0

τne−τeθn

n!
= e−τ

∞∑
n=0

(τeθ)n

n!
= e−τeτe

θ

= eτ(eθ−1)

E[N(t)] =
dMN(t)(θ)

dθ

∣∣∣∣
θ=0

= τeθeτ(eθ−1)
∣∣∣
θ=0

= τ

E[(N(t)− E[N(t)])2] = E[(N(t))2]− {E[N(t)]}2 =
d2MN(t)(θ)

dθ2

∣∣∣∣
θ=0

− τ2

= [τeθeτ(eθ−1) + τ2e2θeτ(eθ−1)]θ=0 − τ2 = τ + τ2 − τ2 = τ

1.15

Δt Δt Δt

nΔt

0 t

Divide the interval [0, t] into n subintervals of length ∆t, so that t = n∆t. The
probability of one arrival in a subinterval is

p ≡ Pr{one arrival in ∆t} = λ∆t+ o(∆t) ≈ λt

n
.

The probability of more than one arrival in a subinterval is o(∆t), which can be
made arbitrarily small. Assuming that there can be at most one arrival in a subin-
terval and using the assumption of independence of non-overlapping intervals, the
total number of arrivals in [0, t] is the sum of n Bernoulli trials. This follows a
binomial distribution:

b(x;n, p) =
(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n

=
n(n− 1) · · · (n− x+ 1)

x!
px(1− p)n(1− p)−x

=
1 · (1− 1/n) · · · (1− x−1

n )
x!

(np)x
(

1− λt

n

)n(
1− λt

n

)−x
.

So,

lim
n→∞

b(x;n, p) =
1
x!

(λt)xe−λt, x = 0, 1, . . . ,

which is the Poisson distribution.
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1.16 Consider

N(s) = k N(t) = k + n

ts0

� � � � � � �

ts0

� � �

since
indep.
incr.

=

N(s) = 0 N(t) = n

Let Pr{N(t)−N(s) = n} = qn(t, s).

So qn(t+ ∆t, s) = qn(t, s)[1− λ∆t] + qn−1(t, s)λ∆t+ o(∆t) n > 0.

q0(t+ ∆t, s) = q0(t, s)[1− λ∆t] + o(∆t).

Rearranging & dividing by ∆t, then taking lim ∆t→ 0 gives

∂qn(t, s)
∂t

= −λqn(t, s) + λqn−1(t, s)

∂q0(t, s)
∂t

= −λq0(t, s)

Solve in a similar manner to (1.11) & (1.12) by the general solution to a first
order linear differential equation was in Problem 1.13 solution. Here, however, the
boundary conditions are

q0(s, s) = 1, qn(s, s) = 0, n 6= 0.

q0(t, s) = ce−λt + e−λt(0) = ce−λt

q0(s, s) = 1 = ce−λs

Therefore c = 1
e−λs

= eλs and q0(t, s) = eλse−λt = e−λ(t−s)

q1(t, s) = ce−λt + e−λt
∫
eλtλe−λ(t−s)dt = ce−λt + e−λteλsλ

∫
dt

= ce−λt + λe−λ(t−s) · t = ce−λt + λte−λ(t−s)

q1(s, s) = 0 = ce−λs + λs⇒ ce−λs = −λs⇒ c = −λseλs

Therefore

q1(t, s) = −λseλse−λt + λte−λ(t−s) = −λse−λ(t−s) + λte−λ(t−s) = λ(t− s)e−λ(t−s)

etc. . .

Therefore, qn(t, s) = pn(t− s). Similarly for qn(t+ h, s+ h).
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1.17 Let Pn(t) ≡ CDF of the arrival counting process.

Then,

Pn(t) = Pr{(sum of n+ 1Erlang interarrival times) ≥ t}

=

∞∫
t

kλ(kλx)(n+1)k−1

[(n+ 1)k − 1]!
e−kλxdx

since the sum of IID Erlang random variables is also an Erlang.

Let u = x− t,

Pn(t) =

∞∫
0

(kλ)(n+1)k(u+ t)(n+1)k−1

[(n+ 1)k − 1]!
e−kλue−kλtdu

=

∞∫
0

(kλ)(n+1)ke−kλue−kλt

[(n+ 1)k − 1]!

(n+1)k−1∑
i=0

u(n+1)k−1−iti

[(n+ 1)k − 1− i]!
· [(n+ 1)k − 1]!

i!
du

=
(n+1)k−1∑

i=0

(kλ)(n+1)ktie−kλt

[(n+ 1)k − 1− i]!i!
·
∫ ∞

0

e−kλuu(n+1)k−1−idu

=
(n+1)k−1∑

i=0

(kλ)(n+1)ktie−kλt

[(n+ 1)k − 1− i]!i!
· [(n+ 1)k − 1− i]!

(kλ)(n+1)k−1
=

(n+1)k−1∑
i=0

(kλt)i

i!
e−kλt

The probability function of the counting process is thus,

pn(t) = Pn(t)− Pn−1(t) =
(n+1)k−1∑

i=0

(kλt)i

i!
e−kλt −

nk−1∑
i=0

(kλt)i

i!
e−kλt

=
(n+1)k−1∑
i=nk

(kλt)i

i!
e−kλt

1.18 First, assume that n is even. Then,

pn(t) = Pr{N(t) = n}
= Pr{n singles}+ Pr{(n− 2) singles and 1 double}

+ Pr{(n− 4) singles and 2 doubles}+ · · ·+ Pr{n/2 doubles}.
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Then,

pn(t) =
e−λt(λt)n

n!
pn +

(
n− 1

1

)
e−λt

(λt)n−1

(n− 1)!
pn−2(1− p)

+
(
n− 2

2

)
e−λt

(λt)n−2

(n− 2)!
pn−4(1− p)2 + · · ·

+
(
n− n/2
n/2

)
e−λt

(λt)n−n/2

(n− n/2)!
pn−2(n/2)(1− p)n/2.

So,

pn(t) = e−λt
{

(λt)n

n!
pn +

(λt)n−1

1!(n− 2)!
pn−2(1− p)

+
(λt)n−2

2!(n− 4)!
pn−4(1− p)2 + · · ·+ (λt)n/2

(n/2)!
(1− p)n/2

}

= e−λt
n/2∑
k=0

(λt)n−k

k!(n− 2k)!
pn−2k(1− p)k.

Similarly, if n is odd,

pn(t) = Pr{N(t) = n}
= Pr{n singles}+ Pr{(n− 2) singles and 1 double}

+ Pr{(n− 4) singles and 2 doubles}
+ · · ·+ Pr{1 single and (n− 1)/2 doubles}.

Proceeding in the same manner gives

pn(t) = e−λt
bn/2c∑
k=0

(λt)n−k

k!(n− 2k)!
pn−2k(1− p)k.

1.19 (a) Denote respective first recurrence times as T1 and T2. The joint PDF is
f(t1, t2) = λ1e

−λ1t1 · λ2e
−λ2t2 , since the processes are independent.

T2

T1

T1 < T2
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P (T1 < T2) =

∞∫
0

t2∫
0

f(t1, t2)dt1, dt2 =

∞∫
0

t2∫
0

λ1e
−λ1t1λ2e

−λ2t2dt1dt2

=

∞∫
0

(1− e−λ1t2)λ2e
−λ2t2dt2 = 1− λ2

λ1 + λ2
=

λ1

λ1 + λ2

(b) First n services will take on the average n/mµ while the remaining m will

require
m∑
i=1

(1/iµ).

1.20 Equation (1.25): pjk(u, s) =
∑
i

pji(u, t)pik(t, s)

Equation (1.27b): pjk(t, t+ ∆t) =
{

qjk(t)∆t+ o(∆t) j 6= k
1− qj(t)∆t+ o(∆t) j = k

Let s = t+ ∆t in (1.26)

pjk(u, t+ ∆t) =
∑
i

pji(u, t)pik(t, t+ ∆t)

= pjk(u, t)pkk(t, t+ ∆t) +
∑
i6=k

pji(u, t)pik(t, t+ ∆t)

Introducing (1.27b)

pjk(u, t+ ∆t) = pjk(u, t)[1− qk(t)∆t+ o(∆t)]

+
∑
i6=k

pji(u, t)[qik(t)∆t+ o(∆t)]

Rewriting this,

pjk(u, t+ ∆t)− pjk(u, t) = [−qk(t)∆t+ o(∆t)]pjk(u, t)

+
∑
i6=k

pji(u, t)[qik(t)∆t+ o(∆t)]

Dividing by ∆t and taking the limit as ∆t→ 0,

∂pjk(u, t)
∂t

= −qk(t)pjk(u, t) +
∑
i 6=k

pji(u, t)qik(t)

which is the Kolmogorov forward equation (1.28a) Next, let u = t − ∆t in (1.26)
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and then introduce (1.27b), [or let s = t; t = u+ ∆u]

pjk(t−∆t, s) =
∑
i

pji(t−∆t, t)pik(t, s)

= pjj(t−∆t, t)pjk(t, s) +
∑
i 6=j

pji(t−∆t, t)pik(t, s)

= [1− qj(t)∆t+ o(∆t)]pjk(t, s) +
∑
i 6=j

[qji(t)∆t+ o(∆t)]pik(t, s)

Rewriting and dividing by ∆t,

pjk(t−∆t, s)pjk(t, s)
∆t

= −qj(t)pjk(t, s) +
o(∆t)

∆t
+
∑
i 6=j

[
qji(t) +

o(∆t)
∆t

]
pik(t, s)

Taking the limit as ∆t→ 0,

−∂pjk(t, s)
∂t

= −qj(t)pjk(t, s) +
∑
i6=j

qji(t)pik(t, s)

Let t = u and s = t to get the Kolmogorov backward equation (1.28b),

∂pjk(u, t)
∂u

= qi(u)pjk(u, t)−
∑
i 6=j

qji(u)pik(u, t)

1.21 Let

Q =


−λ λ 0 0 0 · · ·
0 −λ λ 0 0 · · ·
0 0 −λ λ 0 · · ·
...

...
...

...
...

 .

Then p′(t) = p(t)Q gives

(p′0(t), p′1(t), . . .) = (p0(t), p1(t), . . .)


−λ λ 0 0 0 · · ·
0 −λ λ 0 0 · · ·
0 0 −λ λ 0 · · ·
...

...
...

...
...

 ,

which yields

p′0(t) = −λp0(t),
p′1(t) = λp0(t)− λp1(t),
p′2(t) = λp1(t)− λp2(t),

...
p′n(t) = λpn−1(t)− λpn(t).
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1.22 (a)

MARKOV CHAIN
To start a new problem, enter number of states 
and press button.

Number of States: 2

Enter transition probabilities, then press "Solve" button.

Solution Enter P Matrix below
p0 0.5 0. 1.
p1 0.5 1. 0.

Solve

MARKOV CHAIN
To start a new problem, enter number of states 
and press button.

Number of States: 2

Enter transition probabilities, then press "Solve" button.

Solution Enter P Matrix below
p0 0.5 0.5 0.5
p1 0.5 0.5 0.5

Solve

MARKOV CHAIN
To start a new problem, enter number of states 
and press button.

Number of States: 2

Enter transition probabilities, then press "Solve" button.

Solution Enter P Matrix below
p0 0.5 0.333333 0.666667
p1 0.5 0.666667 0.333333

Solve

(b)

MARKOV CHAIN
To start a new problem, enter number of states 
and press button.

Number of States: 4

Enter transition probabilities, then press "Solve" button.

Solution Enter P Matrix below
p0 0.025615 0.25 0.2 0.12 0.43
p1 0.076844 0.25 0.2 0.12 0.43
p2 0.22541 0. 0.25 0.2 0.55
p3 0.672131 0. 0. 0.25 0.75

Solve
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1.23 i ≥ 1:

Pr{goes to state i+ 1 | in state i and a transition occurs}

=
Pr{goes to state i+ 1 and a trans. occurs | in state i}

Pr{trans. occurs | in state i}

= lim
∆t→0

{
λi∆t+ o(∆t)

1− [1− λi∆t− µi∆t+ o(∆t)]

}
= lim

∆t→0

{
λi + o(∆t)/∆t

λi + µi + o(∆t)/∆t

}
=

λi
λi + µi

Similarly, Pr{goes to state i− 1 | in state i and a transition occurs} = · · ·

=
µi

λi + µi
.

Or, using the results of Problem 1.19a, two independent Poisson processes with
parameters λi and µi, respectively, yield

P{arrival before a departure} =
λi

λi + µi
,

P{departure before an arrival} =
µi

λ+ µi
.

1.24

P (T(1) ≤ t) = 1− (1− t)n

P (nT(1) ≤ t) = P

(
T(1) ≤

t

n

)
= 1−

(
1− t

n

)n
.

Since

lim
n→∞

(
1− t

n

)n
= e−t,

then lim
n→∞

P (nT(1) ≤ t) = 1− e−t, the exponential CDF.

1.25
λeff = λ(1− pK) = .9;W = L/λeff = 5/.9 = 50/9;
Wq = W − 1/µ = 50/9− 1 = 41/9;
ρeff = λeff/µ = .9 and p0 = 1− ρeff = .1.
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1.26 (a) CV = 1.6/2.25 = .71111 = 1/
√
k. Therefore, k = (1/.7111)2 = 1.971(approximately

2). Now β = 1.6/
√

2 = 1.13. Using the QtsPlus Basic Erlang Probability Cal-
culator we get:

ERLANG(k)  PROBABILITY CALCULATIONS
 

Input Parameters:
Erlang scale parameter (β) 1.13
Erlang shape parameter (k) 2

Plot Parameters:
Maximum print/plot value 6

Results:
Distribution mean 2.26
Distribution variance 2.5538
Coefficient of Variation 0.707107

Erlang(2) Distribution Function
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So Pr(Service ≥ 5 min) ≈ 1 - 0.93 = .07.
(b) Using the QtsPlus Mixed Exponential Probability Computation Module (here

we have a pure exponential or a mixture of 1):
MIXED EXPONENTIAL PROBABILITY COMPUTATIONS

Note that we allow both regular exponential mixtures, which are convex combinations
of negative exponential functions, as well as generalized mixtures where the
proportionality constants may be negative although still summing to 1.

Input Parameters: Plot Parameters:
pi θi Maximum print/plot value 10
1. 1.06

Results:
Mean value 1.06
Second moment about zero 2.2472
Variance 1.1236
Coefficient of variation 1

Clear Old Data


